Prime numbers are natural numbers greater than 1 that have no positive divisors other than 1 and themselves. Determining whether a number is prime is a fundamental problem in number theory and has applications in various fields, including cryptography and computer science.
In this challenge, you will implement a function to check if a given number is prime. You will use logical operators and conditional statements to handle the multiple conditions required to identify a prime number efficiently.
Your task is to complete the function is_prime(n: u32) -> bool
that takes an unsigned integer n
and returns a boolean value indicating whether n
is a prime number.
true
if n
is a prime number and false
otherwise.pub fn is_prime(n: u32) -> bool { if n < 2 { false } else if n == 2 { true } else if n % 2 == 0 { false } else { let root: f64 = (n as f64).sqrt(); for i in (3..=root as u32).step_by(2) { if n % i == 0 { return false; } } true }}
pub fn is_prime(n: u32) -> bool { if n < 2 { false } else if n == 2 { true } else if n % 2 == 0 { false } else { let root: f64 = (n as f64).sqrt(); for i in (3..=root as u32).step_by(2) { if n % i == 0 { return false; } } true }}
pub fn is_prime(n: u32) -> bool { if n < 2 { false } else if n == 2 { true } else if n % 2 == 0 { false } else { let root: f64 = (n as f64).sqrt(); let mut divisors = (3..=root as u32).step_by(2).into_iter(); divisors.all(|d| n % d != 0) }}
pub fn is_prime(n: u32) -> bool { // Implement your code here match n { 0 | 1 => return false, _ => for i in 2..n { if n % i == 0 { return false; } } } true}
pub fn is_prime(n: u32) -> bool { println!("Prime: {}", n); if n == 0 { return false; } if n == 1 { return false; } for i in 2..n { if n % i == 0 { return false } } return true}
pub fn is_prime(n: u32) -> bool { // Handle edge cases if n < 2 { return false; } if n == 2 { return true; } if n % 2 == 0 { return false; } // Check divisibility from 3 up to the square root of n let sqrt_n = (n as f64).sqrt() as u32; for i in (3..=sqrt_n).step_by(2) { if n % i == 0 { return false; } } true}
pub fn is_prime(n: u32) -> bool { // Implement your code here if n == 0 || n == 1 { return false; } for i in 2..=n/2 { if n % i == 0 { return false; } } true}
pub fn is_prime(n: u32) -> bool { if n <= 1 { return false; } if n == 2 { return true; } if n % 2 == 0 { return false; } let limit = (n as f64).sqrt() as u32; for i in (3..=limit).step_by(2) { if n % i == 0 { return false; } } true}
pub fn is_prime(n: u32) -> bool { let n = n as usize; let mut primes: Vec<bool> = vec![true; n +1]; primes[0] = false; primes[1] = false; for i in 2..=n { if primes[i] { for j in ((i*i)..=n).step_by(i) { primes[j] = false; } } } primes[n]}
pub fn is_prime(n: u32) -> bool { if n <= 1 { return false; } if n == 2 { return true; } if n % 2 == 0 { return false; } let limit = (n as f64).sqrt() as u32; for i in (3..=limit).step_by(2) { if n % i == 0 { return false; } } true}
pub fn is_prime(n: u32) -> bool { // Implement your code here if n == 0 { return false; } if n == 1 { return false; } let mut i = 2; while i < n { if n % i == 0 { return false; } i = i + 1; } return true}
pub fn is_prime(n: u32) -> bool { // Implement your code here match n { 1 => false, 2 => true, _ => { if n % 2 == 0 { return false } for i in 2..(n/2) { if n % i == 0 { return false; } } true } }}
pub fn is_prime(n: u32) -> bool { // Implement your code here if n <= 1 { return false; } if n == 2 { return true; } if n % 2 == 0 { return false; } let sqrt_n = (n as f64).sqrt() as u32; for i in (3..=sqrt_n).step_by(2) { if n % i == 0 { return false; } } true}
pub fn is_prime(n: u32) -> bool { // Implement your code here if n == 0 || n == 1 { return false; } for i in 2..=n/2 { if n % i == 0 { return false; } } true}
pub fn is_prime(n: u32) -> bool { // Implement your code here if n <= 1 { return false; } if n == 2 { return true; } for i in 2..=(n/2) { if n % i == 0 { return false; } } true}
pub fn is_prime(n: u32) -> bool { // Implement your code here match n { 0 | 1 => false, 2 | 3 => true, _ if n % 2 == 0 || n % 3 == 0 => false, _ => { let mut i = 5; while i * i <= n { if n % i == 0 || n % (i + 2) == 0 { return false; } i += 6; } true } }}
pub fn is_prime(n: u32) -> bool { // Implement your code here if n < 2 { return false; } for a in 2..n { if n % a == 0 { return false; } } true}
pub fn is_prime(n: u32) -> bool { if n <= 1 {return false;} if n == 2 {return true;} for num in 2..n { if n % num == 0 {return false;} } true}
pub fn is_prime(n: u32) -> bool { // Implement your code here if n <= 1 {return false;} if n == 2 {return true;} for num in 2..n { if n % num == 0 {return false;} } return true;}
pub fn is_prime(n: u32) -> bool { if n <= 1 {return false;} if n == 2 {return true;} for candidate in 2..=n/2 { if n % candidate == 0 { return false;} } true}
pub fn is_prime(n: u32) -> bool{ if n < 2 {return false} if n == 2 || n == 3 {return true} if n % 2 == 0 || n % 3 == 0 {return false} for i in (5..=(n as f32).sqrt() as u32).step_by(6){ if n % i == 0 || n % (i + 2) == 0 {return false} } return true // Implement your code here}
pub fn is_prime(n: u32) -> bool { // Implement your code here if n <= 1 { return false; } if n == 2 { return true; } if n % 2 == 0 { return false; } let limit = (n as f64).sqrt() as u32; for i in (3..=limit).step_by(2) { if n % i == 0 { return false; } } return true;}
pub fn is_prime(n: u32) -> bool { // Implement your code here if n < 2 { return false; } if n == 2 { return true; } if n % 2 == 0 { return false; } for i in (3..=(n as f32).sqrt() as u32).step_by(2) { if n % i == 0 { return false; } } true}
pub fn is_prime(n: u32) -> bool { println!("{}", n); if n == 2 {return true;} if n>2 { if n%2 == 0 { return false; } else { for i in 3..=(f64::from(n).sqrt() as u32 + 1) { if n%i != 0 { continue } else { return false; } } return true; } } else { return false; }}
pub fn is_prime(n: u32) -> bool { // Implement your code here if n==2 { return true; } if n<2 || n%2 == 0 { return false; } let n_sqrt_floor: u32 = (n as f32).sqrt().floor() as u32; for i in 3..=n_sqrt_floor { if n%i==0 { return false; } else { continue; } } return true;}
pub fn is_prime(n: u32) -> bool { // Implement your code here let primes :Vec<u32> = vec![2,3,5,7,11,13,17,23,29,31,37,41]; match n { ..=1 => false, ..=3 => true, _ => { let mut r = true; for i in primes { if (i < n) && (n % i == 0){ r = false; } } r } } }
pub fn is_prime(n: u32) -> bool { if n <= 1 { return false; } else if n == 2 { return true; } else if n % 2 == 0 { return false; } let mut start = 3; while start < n { if n % start == 0 { return false; } start += 1; } if n % 1 == 0 && n % n == 0 { return true; } else { return false; }}
pub fn is_prime(n: u32) -> bool { if n <= 1 { return false; } if n <= 3 { return true; } if n % 2 == 0 || n % 3 == 0 { return false; } let mut i = 5; while i * i <= n { if n % i == 0 || n % (i + 2) == 0 { return false; } i += 6; } true}
pub fn is_prime(n: u32) -> bool { // Implement your code here if n <= 1 { return false; } if n == 2 { return true; } if n % 2 == 0 { return false; } let limit = (n as f64).sqrt() as u32; for i in 2..=limit { if n % i == 0 { return false; } } true }
pub fn is_prime(n: u32) -> bool { if n == 2 { return true; } if n < 2 || n % 2 == 0 { return false; } for i in 3..((n as f32).sqrt() as u32 + 1) { if n % i == 0 { return false; } } return true;}
pub fn is_prime(n: u32) -> bool { // Implement your code here if n < 2 { return false; } else if n == 2 { return true; } else if n % 2 == 0 { return false; } for number in 2..n { if n % number == 0 { return false; } } true}
pub fn is_prime(n: u32) -> bool { // Implement your code here if n < 2 { return false; } else if n == 2 { return true; } if n % 2 == 0 { return false; } for number in 2..n { if n % number == 0 { return false; } } true}
pub fn is_prime(n: u32) -> bool { if n <= 1 { return false; } for i in 2..=((n as f64).sqrt() as u32) { if n % i == 0 { return false; } } true}
pub fn is_prime(n: u32) -> bool { // Implement your code here if n == 1 { return false; } if n == 2 { return true; } for i in 2..(f32::sqrt(n as f32) as u32 + 1) { if n % i == 0 { return false; } } true}
pub fn is_prime(n: u32) -> bool { // Implement your code here if n <= 1 { return false; } if n <= 3 { return true; } if n % 2 == 0 || n % 3 == 0 { return false; } let mut i = 5; while i * i <= n { if n % i == 0 || n % (i + 2) == 0 { return false; } i += 6; } true}
pub fn is_prime(n: u32) -> bool { match n{ n if n % 2 == 0 && n != 2 || n < 2 => false, _ => {for i in 3.. ((n as f32).sqrt() as u32) + 1 { if n % i == 0 { return false; } } true}, }}
pub fn is_prime(n: u32) -> bool { match n{ n if n < 2 => false, n if n % 2 == 0 && n != 2 => false, _ => {for i in 3.. ((n as f32).sqrt() as u32) + 1 { if n % i == 0 { return false; } } true}, }}
pub fn is_prime(n: u32) -> bool { // numbers less that 2 aren't prime if n < 2 { return false } // Even numbers if n % 2 == 0 { if n == 2 { return true } else { return false } } // Check odd numbers let sqrt = (n as f64).sqrt() as u32; for x in (3..=sqrt).step_by(2) { if n % x == 0 { return false } } true}
pub fn is_prime(n: u32) -> bool { // Implement your code here if n == 0 || n == 1 {return false;} if n == 2 {return true;} for number in 2..n{ if n % number == 0{ return false; } } return true; }
pub fn is_prime(n: u32) -> bool { // Implement your code here if n <= 1 { return false } for i in 2..n/2+1 { if n % i == 0 { return false } } return true}
pub fn is_prime(n: u32) -> bool { if n < 2 { return false; } // Implement your code here for i in 2..n { if n % i == 0 { return false; } } true}
pub fn is_prime(n: u32) -> bool { // Implement your code here if n < 2 { return false; } else if n == 2 { return true; } else if n % 2 == 0 { return false; } let up = (n as f64).sqrt() as u32; for i in 3..=up { if n % i == 0 { return false; } } true}
pub fn is_prime(n: u32) -> bool { // Implement your code here if n < 2 { return false; } else if n == 2 { return true; } else if n % 2 == 0 { return false; } else { for i in 3..n/2 { if n % i == 0 { return false; } } } true}
use std::num;pub fn is_prime(n: u32) -> bool { // Implement your code here if n < 2 {return false;} if n == 2 {return true;} if n % 2 == 0 {return false;} let up = (n as f64).sqrt() as u32; for i in 3..=up { if n % i == 0 {return false;} } return true;}
pub fn is_prime(n: u32) -> bool { // Implement your code here if n == 1 { return false; } let limit = (n as f64).sqrt() as u32 + 1; for i in 2 .. limit { if n % i == 0 { return false; } } true}
pub fn is_prime(n: u32) -> bool { // Implement your code here if n == 1 { return false; } let limit = (n as f64).sqrt() as u32 + 1; for i in 2 .. limit { if n % i == 0 { return false; } } true}
pub fn is_prime(n: u32) -> bool { if n < 2 {return false} for i in 2..=n/2 { if n % i == 0 {return false} } return true;}
pub fn is_prime(n: u32) -> bool { if n < 2 { return false } else if n == 2 { return true } else if n % 2 == 0 { return false } let upper_limit = (n as f64).sqrt() as u32 + 1; for divisor in 3..=upper_limit { if n % divisor == 0 { return false } } true}
pub fn is_prime(n: u32) -> bool { // Implement your code here match n { 1 => false, 2 => true, _ => { if n % 2 == 0{ return false; } let sqrt = (n as f64).sqrt() as u32; match (3..=sqrt).step_by(2).any(|i| n % i ==0){ true => false, false => true, } } }}
pub fn is_prime(n: u32) -> bool { // Implement your code here if n < 2 { false } else if n == 2 { true } else { for i in 2..=(n as f32).sqrt() as u32 { if n % i == 0 { return false; } } true }}