Prime numbers are natural numbers greater than 1 that have no positive divisors other than 1 and themselves. Determining whether a number is prime is a fundamental problem in number theory and has applications in various fields, including cryptography and computer science.
In this challenge, you will implement a function to check if a given number is prime. You will use logical operators and conditional statements to handle the multiple conditions required to identify a prime number efficiently.
Your task is to complete the function is_prime(n: u32) -> bool
that takes an unsigned integer n
and returns a boolean value indicating whether n
is a prime number.
true
if n
is a prime number and false
otherwise.and1
pub fn is_prime(n: u32) -> bool { // Implement your code here if n < 2 {return false;} for i in 2..n { if i > n/2 {break;} if n % i == 0 { return false; } } true}
and1
pub fn is_prime(n: u32) -> bool { // Implement your code here if n < 2 {return false;} for i in 2..n { if i > n/2 {break;} if n % i == 0 { return false; } } true}
and1
pub fn is_prime(n: u32) -> bool { // Implement your code here if n < 2 {return false;} for i in 2..n { if i > n/2 {break;} if n % i == 0 { return false; } } true}
michdorf
pub fn is_prime(n: u32) -> bool { // Implement your code here if n < 2 { return false; } let mut i = 2; while i < n { if n % i == 0 { return false; } i += 1; } return true;}
javigar322
pub fn is_prime(n: u32) -> bool { if n == 1 { return false; } for i in 2..n { if n % i == 0 { return false; } } true}
GiulianoCTRL
pub fn is_prime(n: u32) -> bool { if n == 1 { return false; } for i in 2..n { if n % i == 0 { return false; } } true}
mgreve
pub fn is_prime(n: u32) -> bool { // Implement your code here if n == 1 { return false; } for i in 2..n { if n % i == 0 { return false; } if i*i >= n { break; } } true}
kobapi28
pub fn is_prime(n: u32) -> bool { // Implement your code here if n < 2 { return false; } for i in 2..n { if n % i == 0 { return false; } } return true;}
danc86
pub fn is_prime(n: u32) -> bool { if n < 2 { return false; } for div in 2..n { if n % div == 0 { return false; } } true}
LenRemmerswaal
pub fn is_prime(n: u32) -> bool { if n < 2 { return false; } if n == 2 { return true; } if n % 2 == 0 { return false; } let mut div = 3; while div*div <= n { if n % div == 0 { return false; } // No prime div += 2; } true}
galenseilis
pub fn is_prime(n: u32) -> bool { // Implement your code here let stop = (n as f64).sqrt() as u32; if n < 2 { return false } else if n == 2 { return true } else if n == 3 { return true } else if n % 2 == 0 { return false } else { for c in (3..stop+1).step_by(2) { if n % c == 0 { return false }; } }; return true}
Kobeieii
pub fn is_prime(n: u32) -> bool { // Implement your code here if n < 2 { return false } if n%2 == 0 { if n==2 { return true } else { return false } } for i in 3..n { if n%i==0 { return false } } true}
xenonminer
pub fn is_prime(n: u32) -> bool { // Implement your code here if n < 2 { return false; } else if n == 2 { return true; } if n % 2 == 0 { return false; } let upper_limit: u32 = (n as f32).sqrt() as u32 + 1; for m in 3..upper_limit { if n % m == 0 { return false; } } return true;}
kennethlove
pub fn is_prime(n: u32) -> bool { if n < 2 { return false; } if n == 2 { return true; } if n % 2 == 0 { return false; } let upper_limit: u32 = (n as f32).sqrt() as u32 + 1; for m in 3..upper_limit { if n % m == 0 { return false; } } true}
kylenoteboom
pub fn is_prime(n: u32) -> bool { // Implement your code here if n < 2 { return false; } if n == 2 { return true; } if n % 2 ==0 { return false;} let square_root = (n as f64).sqrt().floor() as u32; for x in 3..=square_root { if x == n { continue; } if n % x == 0 { return false; } } true}
martin-unit
pub fn is_prime(n: u32) -> bool { // Implement your code here if n < 2 { return false } if n == 2 { return true } for i in 2..=((n as f64).sqrt().ceil() as u32) { if n % i == 0 { return false } } return true}
jimlawton
pub fn is_prime(n: u32) -> bool { // Implement your code here if n < 2 { false } else if n == 2 { true } else if n % 2 == 0 { false } else { let upper: u32 = (n as f32).sqrt() as u32 + 1; for i in 3..upper { if n % i == 0 { return false; } } true }}
XtebanUy
pub fn is_prime(n: u32) -> bool { // Implement your code here match n { i if i < 2 => false, 2 => true, i if i % 2 == 0 => false, i => { for num in 3..=f64::from(i).sqrt() as u32 { if i % num == 0 { return false; } } true } }}
palutz
pub fn is_prime(n: u32) -> bool { // Implement your code here match n { 0 | 1 => false, 2 => true, n if n % 2 == 0 => false, _ => !(3..=(n as f64).sqrt().ceil() as u32).step_by(2).any(|d| n % d == 0), }}
palutz
pub fn is_prime(n: u32) -> bool { // Implement your code here if n < 2 { return false; } let ni = match i32::try_from(n) { Ok(nn) => nn, Err(_) => return false, }; for i in 2..((ni/2)+1) { if (ni % (i as i32)) == 0 { return false } } true}
mbergkvist
pub fn is_prime(n: u32) -> bool { // Implement your code here match n { 0 | 1 => false, 2 => true, n if n % 2 == 0 => false, _ => !(3..=(n as f64).sqrt().ceil() as u32) .step_by(2) .any(|divisor| n % divisor == 0), }}
mbergkvist
pub fn is_prime(n: u32) -> bool { // Implement your code here let is_divisible = || { let mut i: u32 = 3; while i.pow(2) <= n { if n % i == 0 { return false; } i += 2; } true }; match n { 0 | 1 => false, 2 => true, n if n % 2 == 0 => false, _ => is_divisible(), }}
leenalmajz
pub fn is_prime(n: u32) -> bool { // Implement your code here if n < 2 { return false } else if n == 2{ return true } else if n % 2 == 0 { return false } else { for i in 2..n { if n % i == 0 { return false } } return true }}
xiuchiliudu
pub fn is_prime(n: u32) -> bool { // Implement your code here match n { n if n < 2 => false, 2 => true, n if n % 2 == 0 => false, _ => { for i in 2..=(n as f64).sqrt() as u32 { if n % i == 0 { return false; } } true } } }
DivineGod
pub fn is_prime(n: u32) -> bool { // Implement your code here match n { n if n < 2 => false, 2 => true, n if n % 2 == 0 => false, n => prime_test(n), }}fn prime_test(n: u32) -> bool { assert!(n > 2); assert!(n % 2 == 1); (3..=(n as f64).sqrt().ceil() as u32).filter(|t| n % t == 0).count() == 0}
mehdihmr
pub fn is_prime(n: u32) -> bool { // Implement your code here match n { n if n < 2 => false, 2 => true, n if n % 2 == 0 => false, _ => { for i in 2..=(n as f32).sqrt() as u32{ if n % i == 0{ return false; } } return true; } }}
StimhackSoftware
pub fn is_prime(n: u32) -> bool { if n >= 2 { for i in 2..n { if n % i == 0 { return false } } return true } return false}
Algorab
pub fn is_prime(n: u32) -> bool { if n <= 1 { return false; } if n <= 3 { return true; } if n % 2 == 0 || n % 3 == 0 { return false; } let mut i = 5; while i * i <= n { if n % i == 0 || n % (i + 2) == 0 { return false; } i += 6; } true}
sroas
pub fn is_prime(n: u32) -> bool { // Implement your code here match n { 2 => true, x if x < 2 || x % 2 == 0 => false, x => { let upper = (x as f64).sqrt() as u32; !(3..=upper).step_by(2).any(|it| x % it == 0) } }}
danielmpetrov
pub fn is_prime(n: u32) -> bool { match n { 1 => false, 2 => true, _ => { for divisor in 2..n / 2 + 1 { if n % divisor == 0 { return false; } } return true; } }}
jw
pub fn is_prime(n: u32) -> bool { match n { 1 => false, 2 => true, _ => { let half:u32 = n / 2 + 1; for divisor in 2..half { if n % divisor == 0 { return false; } } true } }}
joeslow
pub fn is_prime(n: u32) -> bool { // Implement your code here println!("n is {}", n); if n < 2 { false } else if n == 2 { // even numbers true } else if n % 2 == 0 { // odd numbers false } else { let sqrt = (n as f64).sqrt() as u32; let upper = if sqrt > 3 { sqrt } else { 3 }; // 3 is the smallest divisor we'll ever try !(3..=upper).step_by(2).any(|x| n != x && n % x == 0) // return false if n is cleanly divisible by divisor and divisor is not the same as number }}
qiyuan711
pub fn is_prime(n: u32) -> bool { if n < 2 { false } else if n == 2 { true } else if n % 2 == 0 { false } else { let mut res = true; for i in 3..=((n as f64).sqrt() as u32) { if n % i == 0{ res = false; break } } res }}
yoakemae
pub fn is_prime(n: u32) -> bool { // Implement your code here if n < 2 { return false; } if n == 2 { return true; } if n % 2 == 0 { return false; } let limit = (n as f64).sqrt() as u32 + 1; for i in (3..limit).step_by(2) { if n % i == 0 { return false; } } true}
nt2311-vn
pub fn is_prime(n: u32) -> bool { match n { 1 => false, 2 => true, _ => { let half:u32 = n / 2 + 1; for divisor in 2..half { if n % divisor == 0 { return false; } } return true } }}
tinthid
pub fn is_prime(n: u32) -> bool { // Handle edge cases if n <= 1 { return false; } // 0 and 1 are not prime if n <= 3 { return true; } // 2 and 3 are prime if n % 2 == 0 || n % 3 == 0 { return false; } // Handle multiples of 2 and 3 // Check for prime using 6k ± 1 optimization let mut i = 5; while i * i <= n { if n % i == 0 || n % (i + 2) == 0 { return false; } i += 6; } true}
devarajang
pub fn is_prime(n: u32) -> bool { // Implement your code here if n < 2 { return false; } for i in 2..=n/2 { if n % i == 0 { return false; } } return true;}
jon-a-miller
pub fn is_prime(n: u32) -> bool { if n == 2 { return true; } if n < 2 || n % 2 == 0 { return false; } for i in 3..=((n as f64).sqrt() as u32) { if n % i == 0 { return false; } } true}
DV-13
pub fn is_prime(n: u32) -> bool { if n < 2 { false } else if n == 2 { true } else if n % 2 == 0 { false } else { for d in 3..=((n as f64).sqrt() as u32) { if n % d == 0 { return false; } } true }}
Thymelizabeth
pub fn is_prime(n: u32) -> bool { // Implement your code here if n < 2 { false } else if n == 2 { true } else if n % 2 == 0 { false } else { (3..=(n as f32).sqrt().ceil() as u32).all(|i| n % i != 0) }}
oDqnger
pub fn is_prime(n: u32) -> bool { if n < 2 { false } else { for i in 2..n { if n % i == 0 { return false } } return true } }
tamanishi
pub fn is_prime(n: u32) -> bool { // Implement your code here if n < 2 { return false; } if n == 2 { return true; } if n > 2 && n % 2 == 0 { return false; } for d in 3..=((n as f32).sqrt()) as u32 { if n % d == 0 { return false; } } return true;}
konishu
pub fn is_prime(n: u32) -> bool { if n <= 1 { return false; } if n == 2 { return true; } if n % 2 == 0 { return false; } let sqrt_n = (n as f64).sqrt() as u32; for i in (3..=sqrt_n) { if n % i == 0 { return false; } } true}
nichideropa
pub fn is_prime(n: u32) -> bool { // Implement your code here match n { 0 | 1 => false, 2 => true, _ if n % 2 == 0 => false, _ => { let sqrt = (n as f64).sqrt() as u32; for i in 3..=sqrt { if n % i == 0 { return false; } } return true } }}
aynugek
pub fn is_prime(n: u32) -> bool { match n { ..=1 => false, 2 => true, n if n % 2 == 0 => false, n => { for i in 3..=(n as f32).sqrt() as u32 { if n % i == 0 { return false; } } true } }}
jeypiti
pub fn is_prime(n: u32) -> bool { if n == 2 {return true} if n < 2 || n % 2 == 0 { return false } println!("{:?}", n); let sqrt = f64::from(n).sqrt() as u32; for i in (3..=sqrt).step_by(2) { if n % i == 0 { return false } } true}
0xsmarter
pub fn is_prime(n: u32) -> bool { if n <= 2 { n == 2 } else { let mut i = 2; while i * i <= n { if n % i == 0 { return false } i += 1 } true }}
oebelus
pub fn is_prime(n: u32) -> bool { // Implement your code here let sqroot = (n as f64).sqrt() as u32; if n < 2 { return false; } for i in 2..=sqroot { if n % i == 0 { return false; } } true}
tsucchinoko
pub fn is_prime(n: u32) -> bool { // Implement your code here match n { 0 | 1 => false, 2 => true, _ if n % 2 == 0 => false, _ => { let sqrt_n = (n as f64).sqrt() as u32; (3..=sqrt_n).step_by(2).all(|i| n % i != 0) } }}
LauriSarap
pub fn is_prime(n: u32) -> bool { if n < 2 {return false;} if n == 2 {return true;} if n % 2 == 0 {return false;} let top = (n as f64).sqrt().round() as u32; for i in 3..=top { if is_divisible(n, i) == true { return false; } }; fn is_divisible(numerator: u32, denominator: u32) -> bool { if numerator % denominator == 0 { return true; } else { return false; } } return true;}